6 BE

5. Übungsblatt - Lösungshinweise

1. Die vom Erzeugendensystem $\{d^2, d^3s\}$ erzeugte Untergruppe der Diedergruppe D_6

a) Bestimmen Sie gemäß Definition 2.2.2 die vom Erzeugendensystem $\{d^2, d^3s\}$ erzeugte Teilmenge $\langle d^2, d^3s \rangle$ von

$$D_6 = \{id, d, d^2, d^3, d^4, d^5, s, ds, d^2s, d^3s, d^4s, d^5s\}.$$

Lösungshinweise zu Aufgabe 1a)

Im Folgenden werden die Schritte gemäß Definition 2.2.2 der Reihe nach ausgeführt.

Schritt 0:

$$A_0=\{d^2,d^3s\}$$

Schritt 1:

- Alle Inverse zu den Elementen aus A_0 werden gebildet:
 - $\circ \quad (d^2)^{-1} = d^4 \text{, da } d^2 \circ d^4 = id.$

Wir haben ein neues Element gefunden, und beziehen es im nächsten Schritt mit ein.

- $(d^3s)^{-1} = d^3s$, weil Achsenspiegelungen involutorisch, also selbstinvers sind.
- \circ Die Menge aller Inverser zu Elementen aus A_0 ist also:

$$(A_0)^{-1} := \{(d^2)^{-1}, (d^3s)^{-1}\} = \{d^4, d^3s\}$$

- Alle Verknüpfungen der Elemente von A₀ bilden:
 - o $d^2 \circ d^3 s = (d^2 \circ d^3) \circ s = d^5 \circ s = d^5 s$

Wir haben ein neues Element gefunden, und beziehen es im nächsten Schritt mit ein.

$$\circ d^3s \circ d^2 = d^3 \circ (s \circ d^2) \stackrel{sd^{n-k} = d^ks}{=} d^3 \circ (d^4 \circ s) = (d^3 \circ d^4) \circ s = d \circ s = ds$$
Wir haben ein neues Element gefunden, und beziehen es im nächsten Schritt mit ein.

 $\circ \quad d^2 \circ d^2 = d^4$ $\qquad \qquad d^3s \ involutorisch/selbstinvers$

 $\circ d^3s \circ d^3s \qquad \stackrel{\triangle}{=} \qquad id$

Wir haben ein neues Element gefunden, und beziehen es im nächsten Schritt mit ein.

- o $A_0 \circ A_0 := \{id, d^4, ds, d^5s\}$, die Menge der möglichen Verkettungen aus Elementen von A_0 , die noch nicht in A_0 waren.
- $A_1 = A_0 \cup (A_0)^{-1} \cup (A_0 \circ A_0) = \{d^2, d^3s\} \circ \{d^4, d^3s\} \circ \{id, d^4, ds, d^5s\}$ = $\{id, d^2, d^4, ds, d^3s, d^5s\}$

Schritt 2:

- Alle Inverse zu den Elementen aus A_1 werden gebildet:
 - $(d^4)^{-1} = d^2$, da $d^4 \circ d^2 = id$.
 - $(d^5s)^{-1} = d^5s$, weil Achsenspiegelungen involutorisch/selbstinvers sind.
 - $(d \circ s)^{-1} = ds$, weil Achsenspiegelungen involutorisch/selbstinvers sind.
 - \circ $(id)^{-1} = id$, weil $id \circ id = id$.
 - O Die Menge aller Inverser zu Elementen aus A_1 ist also:

$$(A_1)^{-1} := \{id^{-1}, (d^2)^{-1}, (d^4)^{-1}, (ds)^{-1}, (d^3s)^{-1}, (d^5s)^{-1}\} = \{id, d^2, d^4, ds, d^3s, d^5s\}$$
$$= A_1$$

https://tim-lutz.de

• Alle Verknüpfungen der Elemente von A_1 bilden:

0	id	d^2	d^4	ds	d^3s	d^5s
id	id	d^2	d^4	ds	d^3s	d^5s
d^2	d^2	d^4	id	d^5s	ds	d^3s
d^4	d^4	id	d^2	d^3s	d^5s	ds
ds	ds	d^3s	d^5s	id	d^2	d^4
d^3s	d^3s	d^5s	ds	d^4	id	d^2
d^5s	d^5s	ds	d^3s	d^2	d^4	id

o $A_1 \circ A_1 = A_1$, da keine neuen Elemente hinzukommen.

- $A_2 = A_1 \cup (A_1)^{-1} \cup (A_1 \circ A_1) = A_1$
- Da im Schritt 2 keine neuen Elemente dazugekommen sind, kann der Algorithmus hier abgebrochen werden.

Also gilt: $\langle d^2, d^3 s \rangle = A_0 \cup A_1 = \{id, d^2, d^4, ds, d^3 s, d^5 s\} \subset D_6$

b) Begründen Sie, warum $(\langle d^2, d^3s \rangle, \circ)$ eine Untergruppe von (D_6, \circ) ist.

2 BE

Lösungshinweise zu Aufgabe 1b)

Nach den Untergruppenkriterien (vgl. Satz 2.2.1) ist wegen $\langle d^2, d^3s \rangle \subset D_6$ nur zu zeigen:

(UG1) $\forall_{a,b\in U} a \circ b \in U$

(Abgeschlossenheit)

(UG2) $\forall_{a \in U} a^{-1} \in U$

(Inverse in U enthalten)

Wegen der Konstruktion von $\langle d^2, d^3s \rangle$ bei der alle möglichen Verknüpfungen und alle Inverse gebildet werden, ist $\langle d^2, d^3s \rangle$ bzgl. der Verkettung \circ einerseits abgeschlossen (UG1) und enthält andererseits auch alle Inverse zu allen Elementen. Damit ist $(\langle d^2, d^3s \rangle, \circ)$ nach Satz 2.2.1 eine Untergruppe von (D_6, \circ) .

c) Ist
$$((d^2, d^3s), \circ)$$
 kommutativ? Begründen Sie ihre Antwort.

2 BE

Lösungshinweise zu Aufgabe 1c)

 $(\langle d^2, d^3s \rangle, \circ)$ ist nicht kommutativ, dies wird bereits in Teilaufgabe a) deutlich, denn:

 $d^2 \in \langle d^2, d^3s \rangle$ und $d^3s \in \langle d^2, d^3s \rangle$, jedoch gilt:

$$d^2\circ d^3s=(d^2\circ d^3)\circ s=d^5\circ s=d^5s$$

$$d^3s \circ d^2 = d^3 \circ (s \circ d^2) \stackrel{sd^{n-k} = d^ks}{=} d^3 \circ (d^4 \circ s) = (d^3 \circ d^4) \circ s = d \circ s = ds$$

und somit $d^2 \circ d^3 s \neq d^3 s \circ d^2$.

https://tim-lutz.de Seite 2 von 4

2. Verknüpfungstafel zu ($\{8\mathbb{Z}, 1+8\mathbb{Z}, 2+8\mathbb{Z}, 3+8\mathbb{Z}, 4+8\mathbb{Z}, 5+8\mathbb{Z}, 6+8\mathbb{Z}, 7+8\mathbb{Z}\}$, ·) Erstellen Sie für ($\{[0]_8, [1]_8, [2]_8, [3]_8, [4]_8, [5]_8, [6]_8, [7]_8\}$, ·) die Verknüpfungstafel bzgl. der Multiplikation als Verknüpfung.

4 BE

Lösungshinweise zu Aufgabe 2

	[0]8	[1] ₈	[2] ₈	[3]8	[4] ₈	[5] ₈	[6] ₈	[7] ₈
[0]8	[0] ₈							
[1] ₈	[0] ₈	[1] ₈	[2] ₈	[3] ₈	[4] ₈	[5] ₈	[6] ₈	[7] ₈
[2]8	[0]8	[2] ₈	[4] ₈	[6] ₈	[0]8	[2] ₈	[4] ₈	[6] ₈
[3]8	[0] ₈	[3] ₈	[6] ₈	[1] ₈	[4] ₈	[7] ₈	[2] ₈	[5] ₈
[4]8	[0] ₈	[4] ₈						
[5] ₈	[0] ₈	[5] ₈	[2] ₈	[7] ₈	[4] ₈	[1] ₈	[6] ₈	[3] ₈
[6]8	[0] ₈	[6] ₈	[4] ₈	[2] ₈	[0] ₈	[6] ₈	[4] ₈	[2] ₈
[7]8	[0]8	[7] ₈	[6] ₈	[5] ₈	[4] ₈	[3] ₈	[2] ₈	[1] ₈

3. Nullteiler

Zeigen Sie: Wenn ein Element a eines Rings $(R, +, \cdot)$ ein Nullteiler ist, dann ist entweder a+a ebenfalls ein Nullteiler, oder a+a=0.

4 BE

Lösungshinweise zu Aufgabe 3

Sei $a \in R \setminus \{0\}$ Nullteiler. Dann gibt es ein $b \in R \setminus \{0\}$ mit $a \cdot b = 0$ (*).

1. Fall: a + a = 0

Und damit ist der erste Fall schon abgeschlossen. Warum benötigen wir den ersten Fall?

In diesem Fall kann nach Nullteiler-Definition a+a kein Nullteiler sein, weil dies voraussetzt, dass $a+a\neq 0$.

Beispiel für diesen Fall:

In
$$\mathbb{Z}_8$$
 ist $[4]_8$ ein Nullteiler, wegen $[4]_8 \cdot [2]_8 = [4 \cdot 2]_8 = [8]_8 = [0]_8$. Andererseits gilt: $[4]_8 + [4]_8 = [4+4]_8 = [8]_8 = [0]_8$

2. Fall: $a + a \neq 0$

R ist distributiv
$$(*)$$
 0 ist Nullelement in R $(a+a)\cdot b \stackrel{\cong}{=} a\cdot b + a\cdot b \stackrel{\cong}{=} 0 + 0 \stackrel{\cong}{=} 0$

Das ist aber gerade die Definition eines Nullteilers.

https://tim-lutz.de Seite 3 von 4

4 BE

4. Nullteiler von $(\{8\mathbb{Z}, 1 + 8\mathbb{Z}, 2 + 8\mathbb{Z}, 3 + 8\mathbb{Z}, 4 + 8\mathbb{Z}, 5 + 8\mathbb{Z}, 6 + 8\mathbb{Z}, 7 + 8\mathbb{Z}\}, \cdot)$

a) Geben Sie für jede der Restklassen $[0]_8$, $[1]_8$, $[2]_8$, $[3]_8$, $[4]_8$, $[5]_8$, $[6]_8$, $[7]_8$ modulo 8 an, ob sie Nullteiler in ($\{8\mathbb{Z}, 1 + 8\mathbb{Z}, 2 + 8\mathbb{Z}, 3 + 8\mathbb{Z}, 4 + 8\mathbb{Z}, 5 + 8\mathbb{Z}, 6 + 8\mathbb{Z}, 7 + 8\mathbb{Z}\}$,·) ist und begründen Sie dies.

Lösungshinweise zu Aufgabe 4a)

- $[0]_8$ ist kein Nullteiler, weil die $[0]_8$ in jedem Produkt $[0]_8 \cdot [1]_8 = [0]_8$, das $[0]_8$, also das neutrale Element der Multiplikation, ergibt, bereits mindestens einmal als Faktor vorkommt.
- [1]₈ ist kein Nullteiler, weil ein Produkt, bei dem ein Faktor die [1]₈ ist, nur dann gleich [0]₈ werden kann, wenn der andere Faktor [0]₈ ist, wie etwa bei [0]₈ · [1]₈ = [0]₈.
 [2]₈, [4]₈ und [6]₈ sind Nullteiler, weil folgende Produkte, bei denen kein Faktor die [0]₈ ist, trotzdem gleich [0]₈ ist:

$$[2]_8 \cdot [4]_8 = [8]_8 = [0]_8$$
, $[4]_8 \cdot [4]_8 = [16]_8 = [0]_8$ und $[6]_8 \cdot [4]_8 = [24]_8 = [0]_8$, ...

- $[3]_8$ ist kein Nullteiler, weil ein Produkt, bei dem ein Faktor die $[3]_8$ ist, nur dann gleich $[0]_8$ werden kann, wenn der andere Faktor $[0]_8$ ist, wie etwa bei $[0]_8 \cdot [3]_8 = [0]_8$.
- $[5]_8$ ist kein Nullteiler, weil ein Produkt, bei dem ein Faktor die $[5]_8$ ist, nur dann gleich $[0]_8$ werden kann, wenn der andere Faktor $[0]_8$ ist, wie etwa bei $[0]_8 \cdot [5]_8 = [0]_8$.
- $[7]_8$ ist kein Nullteiler, weil ein Produkt, bei dem ein Faktor die $[7]_8$ ist, nur dann gleich $[0]_8$ werden kann, wenn der andere Faktor $[0]_8$ ist, wie etwa bei $[0]_8 \cdot [7]_8 = [0]_8$.

b) Ist $(\mathbb{Z}_8 \setminus \{[0]_8\}, \cdot)$ eine Gruppe?

1 BE

Lösungshinweise zu Aufgabe 4b)

 $(\mathbb{Z}_8 \setminus \{[0]_8\}, \cdot)$ ist keine Gruppe.

Zum Beispiel ist $[2]_8$ nicht invertierbar bzgl. ·, denn $\forall_{x \in \mathbb{Z}_8 \setminus \{[0]_8\}} [2]_8 \cdot x \neq [1]_8$.

 $\mathbb{Z}_8 \setminus \{[0]_8\}$ ist bzgl. · auch nicht abgeschlossen, denn $[2]_8 \cdot [4]_8 = [8]_8 = [0]_8 \notin \mathbb{Z}_8 \setminus \{[0]_8\}$ (Siehe Verknüpfungstafel).

c) Bestimmen Sie für folgenden Gleichungen jeweils die Lösungsmenge in \mathbb{Z}_8 :

$$[3]_8 \cdot x = [7]_8$$

$$[4]_8 \cdot x = [0]_8$$

$$[6]_8 \cdot x = [3]_8$$

$$[2]_8 \cdot x = [4]_8$$

4 BE

Lösungshinweise zu Aufgabe 4c)

$$\begin{split} &[3]_8 \cdot x = [7]_8 \Rightarrow \mathbb{L} = \{[5]_8\} \\ &[4]_8 \cdot x = [0]_8 \Rightarrow \mathbb{L} = \{[0]_8, [2]_8, [4]_8, [6]_8\} \\ &[6]_8 \cdot x = [3]_8 \Rightarrow \mathbb{L} = \{\} \\ &[2]_8 \cdot x = [4]_8 \Rightarrow \mathbb{L} = \{[2]_8, [6]_8\} \end{split}$$

Erreichbare Gesamtpunktzahl für dieses Übungsblatt:

27 BE

https://tim-lutz.de Seite 4 von 4